Weight of gas

The weight of any gas can be expressed as a function of its density and volume as

$$
\begin{equation*}
W=\rho g V \tag{1}
\end{equation*}
$$

where in imperial units:
W is the weight of the gas $\left(1 b_{f}\right)$
ρ is the density $\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$
V is the volume of the gas (ft^{3})
$\mathrm{g}=$ is the acceleration of gravity, or $32.2\left(\mathrm{ft} / \mathrm{s}^{2}\right)$

The density of a gas can be expressed as

$$
\begin{equation*}
\rho=\frac{P(M W)}{R T Z} \tag{2}
\end{equation*}
$$

Where in imperial units:
P is the gas pressure (psia)
MW is the gas molecular weight (--) air has a MW of 28.964
R is the universal gas constant $10.732(\mathrm{psia})\left(\mathrm{ft}^{3}\right) /(\mathrm{lbmol})\left({ }^{\circ} \mathrm{R}\right)$
T is the absolute gas temperature $\left({ }^{\circ} \mathrm{R}\right)$
Z is the gas compressibility factor (--)

Example

Calculate the weight of air in an $10.7 \mathrm{ft}^{3}$ tank assuming temperature is $60^{\circ} \mathrm{F}$.

Solution:

For air the gas compressibility is a function of pressure and temperature. At 1515 psia (104.5 bar) and $60^{\circ} \mathrm{F}\left(60+460=520^{\circ} \mathrm{R}\right)$, the gas compressibility is 0.993 . See http://www.engineeringtoolbox.com/ideal-gas-law-d 157.html to determine the compressibility of air.

The air density can then be calculated as

$$
\begin{equation*}
\rho=\frac{P(M W)}{R T Z}=\frac{1514.7(\text { psia })(28.964)}{10.732 \frac{(\text { psia })\left(f t^{3}\right)}{(\mathrm{lbmol})\left({ }^{\circ} R\right)} 520\left({ }^{\circ} R\right) 0.993}=7.92 \frac{\mathrm{lb} \frac{b_{m}}{f t^{3}}}{} \tag{3}
\end{equation*}
$$

Substituting the air density (3) into (1) gives

$$
W=\rho g V=7.92 \frac{l b_{m}}{f t^{3}} 32.2 \frac{f t}{s^{2}} 10.7 f t^{3} \frac{1 l b_{f} s^{2}}{32.174 l b_{m}}=84.8 l b_{f}
$$

There are 379.5 scf of air per lb of air so this would equate to $32,174 \mathrm{scf}$ of air.

